Learning Classifier Systems in Data Mining
Title:
Learning Classifier Systems in Data Mining
ISBN:
9783540789796
Edition:
1st ed. 2008.
Publication Information New:
Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Physical Description:
IX, 230 p. online resource.
Series:
Studies in Computational Intelligence, 125
Contents:
Learning Classifier Systems in Data Mining: An Introduction -- Data Mining in Proteomics with Learning Classifier Systems -- Improving Evolutionary Computation Based Data-Mining for the Process Industry: The Importance of Abstraction -- Distributed Learning Classifier Systems -- Knowledge Discovery from Medical Data: An Empirical Study with XCS -- Mining Imbalanced Data with Learning Classifier Systems -- XCS for Fusing Multi-Spectral Data in Automatic Target Recognition -- Foreign Exchange Trading Using a Learning Classifier System -- Towards Clustering with Learning Classifier Systems -- A Comparative Study of Several Genetic-Based Supervised Learning Systems.
Abstract:
Just over thirty years after Holland first presented the outline for Learning Classifier System paradigm, the ability of LCS to solve complex real-world problems is becoming clear. In particular, their capability for rule induction in data mining has sparked renewed interest in LCS. This book brings together work by a number of individuals who are demonstrating their good performance in a variety of domains. The first contribution is arranged as follows: Firstly, the main forms of LCS are described in some detail. A number of historical uses of LCS in data mining are then reviewed before an overview of the rest of the volume is presented. The rest of this book describes recent research on the use of LCS in the main areas of machine learning data mining: classification, clustering, time-series and numerical prediction, feature selection, ensembles, and knowledge discovery.
Added Corporate Author:
Electronic Access:
Full Text Available From Springer Nature Engineering 2008 Packages
Language:
English