Cover image for Multicomponent Flow Modeling
Multicomponent Flow Modeling
Title:
Multicomponent Flow Modeling
ISBN:
9781461215806
Edition:
1st ed. 1999.
Publication Information New:
Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 1999.
Physical Description:
XVI, 321 p. online resource.
Series:
Modeling and Simulation in Science, Engineering and Technology,
Contents:
1. Introduction -- 2. Fundamental Equations -- 2.1. Introduction -- 2.2. Conservation equations -- 2.3. Thermodynamics -- 2.4. Chemistry -- 2.5. Transport fluxes -- 2.6. Entropy -- 2.7. Boundary conditions -- 2.8. Notes -- 2.9. References -- 3. Approximate and Simplified Models -- 3.1. Introduction -- 3.2. One-reaction chemistry -- 3.3. Small Mach number flows -- 3.4. Coupling -- 3.5. Notes -- 3.6. References -- 4. Derivation from the Kinetic Theory -- 4.1. Introduction -- 4.2. Kinetic framework -- 4.3. Kinetic entropy -- 4.4. Enskog expansion -- 4.5. Zero-order approximation -- 4.6. First-order approximation -- 4.7. Transport linear systems -- 4.8. Notes -- 4.9. References -- 5. Transport Coefficients -- 5.1. Introduction -- 5.2. Transport algorithms -- 5.3. Molecular parameters -- 5.4. Shear viscosity -- 5.5. Volume viscosity -- 5.6. Diffusion matrix -- 5.7. Thermal conductivity -- 5.8. Thermal diffusion ratios -- 5.9. Partial thermal conductivity -- 5.10. Thermal diffusion coefficients -- 5.11. Notes -- 5.12. References -- 6. Mathematics of Thermochemistry -- 6.1. Introduction -- 6.2. Thermodynamics with volume densities -- 6.3. Thermodynamics with mass densities -- 6.4. Chemistry sources -- 6.5. Positive equilibrium points -- 6.6. Boundary equilibrium points -- 6.7. Inequalities near equilibrium -- 6.8. A global stability inequality -- 6.9. Notes -- 6.10. References -- 7. Mathematics of Transport Coefficients -- 7.1. Introduction -- 7.2. Assumptions on transport coefficients -- 7.3. Properties of diffusion matrices -- 7.4. Properties of other coefficients -- 7.5. Diagonal diffusion -- 7.6. Diffusion inequalities -- 7.7. Stefan-Maxwell equations -- 7.8. Notes -- 7.9. References -- 8. Symmetrization -- 8.1. Introduction -- 8.2. Vector notation -- 8.3. Quasilinear form -- 8.4. Symmetrization and entropic variables -- 8.5. Normal forms -- 8.6. Symmetrization for multicomponent flows -- 8.7. Normal forms for multicomponent flows -- 8.8. Notes -- 8.9. References -- 9. Asymptotic Stability -- 9.1. Introduction -- 9.2. Governing equations -- 9.3. Local dissipative structure -- 9.4. Global existence theorem -- 9.5. Decay estimates -- 9.6. Local dissipativity for multicomponent flows -- 9.7. Global existence for multicomponent flows -- 9.8. Notes -- 9.9. References -- 10. Chemical Equilibrium Flows -- 10.1. Introduction -- 10.2. Governing equations -- 10.3. Entropy and symmetrization -- 10.4. Normal forms -- 10.5. Global existence -- 10.6. Notes -- 10.7. References -- 11. Anchored Waves -- 11.1. Introduction -- 11.2. Governing equations -- 11.3. First properties -- 11.4. Existence on a bounded domain -- 11.5. Existence of solutions -- 11.6. Notes -- 11.7. References -- 12. Numerical Simulations -- 12.1. Introduction -- 12.2. Laminar flame model -- 12.3. Computational considerations -- 12.4. Hydrogen-Air Bunsen flame -- 12.5. References.
Abstract:
The goal of this is book to give a detailed presentation of multicomponent flow models and to investigate the mathematical structure and properties of the resulting system of partial differential equations. These developments are also illustrated by simulating numerically a typical laminar flame. Our aim in the chapters is to treat the general situation of multicomponent flows, taking into account complex chemistry and detailed transport phe­ nomena. In this book, we have adopted an interdisciplinary approach that en­ compasses a physical, mathematical, and numerical point of view. In par­ ticular, the links between molecular models, macroscopic models, mathe­ matical structure, and mathematical properties are emphasized. We also often mention flame models since combustion is an excellent prototype of multicomponent flow. This book still does not pretend to be a complete survey of existing models and related mathematical results. In particular, many subjects like multi phase-flows , turbulence modeling, specific applications, porous me­ dia, biological models, or magneto-hydrodynamics are not covered. We rather emphasize the fundamental modeling of multicomponent gaseous flows and the qualitative properties of the resulting systems of partial dif­ ferential equations. Part of this book was taught at the post-graduate level at the Uni­ versity of Paris, the University of Versailles, and at Ecole Poly technique in 1998-1999 to students of applied mathematics.
Added Corporate Author:
Language:
English