Learning to rank
Título:
Learning to rank
Autor personal:
PRODUCTION_INFO:
[s.l. : s.n.], 2011.
Descripción física:
ix, 43 leaves : illustrations, tables ; 30 cm + 1 CD-ROM.
Nota general:
Date of approval: 28.04.2011.
Includes list of figures, tables, symbols.
Síntesis:
The web has grown so rapidly in the last decade and it brought the need for proper ranking. Learning to rank (LTR) is the collection of machine learning technolo- gies that construct a ranking model using training data. The model can sort documents according to their degrees of relevance or preference. In this thesis, we introduce LTR technologies and divide them into three ap- proaches: the point-wise, pair-wise and list-wise. We review the theoritical aspects of each category and introduce the representative algorithms of them. We also introduce a new LTR method GRwC which uses classifîcation and graph algorithms. We reduce the ranking problem to a two class classifîcation problem and apply KNN algorithm on a modified LTR dataset. We compared it with the popular ranking algorithm RankingSVM. Experiments on the well-known ranking datasets show that our proposed method gives slightly worse results than RankingSVM.
Sıralama öğrenimi örnek verileri kullanarak bunlardan bir sıralama modeli oluşturan makine öğrenimi metotlarıdır. Bu model dokümanları önemine ya da uygunluğuna bağlı olarak sıralayabilir. Birçok Bilgiye Erişim teknolojisinin temelinde sıralama vardır. Bu yüzden Sıralama öğrenimi teknolojisi ile varolan bu teknolojiler daha da iyileştirilebilir. Sıralama öğrenimi son yıllarda artan bir popülariteye sahip olmuştur. Bunun temel sebebi Sıralama öğrenimi metotlarının arama motorları tarafından kullanılmaya başlanmış olmasıdır. Büyük arama motoru şirketleri son zamanlarda bir çok Sıralama öğrenimi algoritmaları geliştirmiş ve bu algoritmaları arama sistemlerinde kullanarak iyi sonuçlar almışlardır. Bu tezde, Sıralama öğrenimi teknolojilerini inceledik ve üç ayrı kategoriye ayırdık: nokta-bazlı, çift-bazlı ve liste-bazlı yaklaşımlar. Ayrıca yeni bir Sıralama öğrenimi algoritması tasarlayıp bunu popüler bir algoritma olan RankingSVM ile karşılatırdık.
Título uniforme añadido:
Thesis (Master) -- Işık University: Graduate School for Science and Engineering.
M.S. -- Computer Engineering.
Graduate School for Science and Engineering -- Computer Engineering.
Sıralama öğrenimi. English.
Acceso electrónico:
Click for open access
Idioma:
Inglés