Image de couverture de Mathematical Analysis of Complex Cellular Activity
Mathematical Analysis of Complex Cellular Activity
Titre:
Mathematical Analysis of Complex Cellular Activity
ISBN (Numéro international normalisé des livres):
9783319181141
Auteur personnel:
Edition:
1st ed. 2015.
PRODUCTION_INFO:
Cham : Springer International Publishing : Imprint: Springer, 2015.
Description physique:
XII, 107 p. 37 illus., 25 illus. in color. online resource.
Collections:
Frontiers in Applied Dynamical Systems: Reviews and Tutorials, 1
Table des matières:
Preface -- Bursting Oscillations in Pituitary Cells: Z-Curves, Folded Nodes, Calcium Stores and Mixed-Mode Oscillations -- The Nonlinear Dynamics of Calcium.
Extrait:
This book contains two review articles on mathematical physiology that deal with closely related topics but were written and can be read independently. The first article reviews the basic theory of calcium oscillations (common to almost all cell types), including spatio-temporal behaviors such as waves. The second article uses, and expands on, much of this basic theory to show how the interaction of cytosolic calcium oscillators with membrane ion channels can result in highly complex patterns of electrical spiking. Through these examples one can see clearly how multiple oscillatory processes interact within a cell, and how mathematical methods can be used to understand such interactions better. The two reviews provide excellent examples of how mathematics and physiology can learn from each other, and work jointly towards a better understanding of complex cellular processes. Review 1: Richard Bertram, Joel Tabak, Wondimu Teka, Theodore Vo, Martin Wechselberger: Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells Review 2: Vivien Kirk, James Sneyd: The Nonlinear Dynamics of Calcium.
Auteur collectif ajouté:
Langue:
Anglais