Image de couverture de Numerical Simulation of Viscous Shock Layer Flows
Numerical Simulation of Viscous Shock Layer Flows
Titre:
Numerical Simulation of Viscous Shock Layer Flows
ISBN (Numéro international normalisé des livres):
9789401584906
Auteur personnel:
Edition:
1st ed. 1995.
PRODUCTION_INFO:
Dordrecht : Springer Netherlands : Imprint: Springer, 1995.
Description physique:
XII, 346 p. online resource.
Collections:
Fluid Mechanics and Its Applications, 33
Table des matières:
1 Simulation of supersonic flow around a body using the Navier-Stokes equations -- 2 Viscous shock layer models and computational methods -- 3 Applications to plane and axisymmetric flows -- 4 Simulation of three-dimensional flows -- 5 Physical and chemical effects -- References.
Extrait:
The book is concerned with mathematical modelling of supersonic and hyper­ sonic flows about bodies. Permanent interest in this topic is stimulated, first of all, by aviation and aerospace engineering. The designing of aircraft and space vehicles requires a more precise prediction of the aerodynamic and heat transfer characteristics. Together with broadening of the flight condition range, this makes it necessary to take into account a number of gas dynamic and physical effects caused by rarefaction, viscous-inviscid interaction, separation, various physical and chemical processes induced by gas heating in the intensive bow shock wave. The flow field around a body moving at supersonic speed can be divided into three parts, namely, shock layer, near wake including base flow, and far wake. The shock layer flow is bounded by the bow shock wave and the front and lat­ eral parts of the body surface. A conventional approach to calculation of shock layer flows consists in a successive solution of the inviscid gas and boundary layer equations. When the afore-mentioned effects become important, implementation of these models meets difficulties or even becomes impossible. In this case, one has to use a more general approach based on the viscous shock layer concept.
Auteur collectif ajouté:
Langue:
Anglais