Imagem da capa para Applied Proof Theory: Proof Interpretations and their Use in Mathematics
Applied Proof Theory: Proof Interpretations and their Use in Mathematics
Título:
Applied Proof Theory: Proof Interpretations and their Use in Mathematics
ISBN:
9783540775331
Edição:
1st ed. 2008.
PRODUCTION_INFO:
Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2008.
Descrição Física:
XX, 536 p. online resource.
Série:
Springer Monographs in Mathematics,
Conteúdo:
Unwinding proofs ('Proof Mining') -- Intuitionistic and classical arithmetic in all finite types -- Representation of Polish metric spaces -- Modified realizability -- Majorizability and the fan rule -- Semi-intuitionistic systems and monotone modified realizability -- Gödel's functional ('Dialectica') interpretation -- Semi-intuitionistic systems and monotone functional interpretation -- Systems based on classical logic and functional interpretation -- Functional interpretation of full classical analysis -- A non-standard principle of uniform boundedness -- Elimination of monotone Skolem functions -- The Friedman A-translation -- Applications to analysis: general metatheorems I -- Case study I: Uniqueness proofs in approximation theory -- Applications to analysis: general metatheorems II -- Case study II: Applications to the fixed point theory of nonexpansive mappings -- Final comments.
Resumo:
Ulrich Kohlenbach presents an applied form of proof theory that has led in recent years to new results in number theory, approximation theory, nonlinear analysis, geodesic geometry and ergodic theory (among others). This applied approach is based on logical transformations (so-called proof interpretations) and concerns the extraction of effective data (such as bounds) from prima facie ineffective proofs as well as new qualitative results such as independence of solutions from certain parameters, generalizations of proofs by elimination of premises. The book first develops the necessary logical machinery emphasizing novel forms of Gödel's famous functional ('Dialectica') interpretation. It then establishes general logical metatheorems that connect these techniques with concrete mathematics. Finally, two extended case studies (one in approximation theory and one in fixed point theory) show in detail how this machinery can be applied to concrete proofs in different areas of mathematics. .
Autor Corporativo Adicionado:
LANGUAGE:
Inglês