Statistical Tables for Multivariate Analysis A Handbook with References to Applications için kapak resmi
Statistical Tables for Multivariate Analysis A Handbook with References to Applications
Başlık:
Statistical Tables for Multivariate Analysis A Handbook with References to Applications
ISBN:
9781461256090
Personal Author:
Edition:
1st ed. 1983.
Yayın Bilgileri:
New York, NY : Springer New York : Imprint: Springer, 1983.
Fiziksel Tanımlama:
XXII, 504 p. online resource.
Series:
Springer Series in Statistics,
Contents:
I: The Primary Tables for Testing Multivariate Statistical Hypotheses -- Preliminary Remarks -- 0: A Brief Summary of the Test Criteria for the Multivariate General Linear Hypothesis -- Table 1: The Likelihood Ratio Criterion ? of S. S. Wilks: Tables of F. J. Wall -- Table 2: The ?max - Criterion of K. C. S. Pillai: A Version of the Maximum Root Criterion of S. N. Roy -- Table 3: The Generalized F-Criterion of R. D. Bock: A Version of the Maximal Root Criterion of S. N. Roy -- Table 4: The Nomograms of D. L. Heck for the Distribution of the ?max - Criterion of S. N. Roy -- Table 5: The ?max - Criterion of F. G. Foster and D. H. Rees: A Version of the Maximum Root Criterion of S. N. Roy -- Table 6: The Trace Criterion To2 of H. Hotelling and D. N. Lawley in the Version of K. C. S. Pillai -- Table 7: The Trace Criterion of H. Hotelling and D. N. Lawley in the Version V(s) of K. C. S. Pillai -- Table 8: The T2-Criterion of H. Hotelling: Tables of D. R. Jensen and R. B. Howe -- II: Tables Related to the Multivariate Normal Distribution -- Preliminary Remarks -- Table 9: The Multivariate Normal Distribution with Equal Correlations: Tables of S. S. Gupta -- Table 10: The Distribution of the Maximum of N Equally Correlated Normal Standardised Random Variables: Tables of S. S. Gupta, K. Nagel, and S. Panchapakesan -- Table 11: The Sphericity Test of J. W. Mauchly: Tables of B. N. Nagarsenker and K. C. S. Pillai -- Table 12: The Test Criteria Lmvc, Lvc and Lm of S. S. Wilks: Tables of S. S. Wilks and also of J. Roy and V. K. Murthy -- Table 13: The Multivariate Outlier Criteria of S. S. Wilks -- Table 14: Multivariate Tolerance Regions with ?-Expectation (Type 2): Tables of D. A. S. Fraser and I. Guttman -- Table 15: Multivariate Tolerance Regions with ?-Content (Type 1): Tables of V. Chew -- Table 16: Testing a Single Covariance Matrix: Tables of B. P. Korin -- Table 17: Testing the Equality of k Covariance Matrices: Tables of B. P. Korin -- Table 18: Distribution of the Extreme Roots of a WISHART Matrix: Tables of R. Ch. Hanumara and W. A. Thompson -- Table 19: The Multivariate t-Distribution: Tables of P. R. Krishnaiah and J. V. Armitage -- III: Further Tables for Multivariate Problems -- Preliminary Remarks -- Table 20: The Gamma Distribution: Tables of M. B. Wilk, R. Gnanadesikan, and M. J. Huyette -- Table 21: The BARGMANN Test for Simple Structure of a Factor Pattern: Tables of R. Bargmann -- Table 22: Upper Percentage Points of the BONFERRONI Chi-Square Statistic: Tables of G. B. Beus and D. R. Jensen -- Table 23: Lower Percentage Points of the BONFERRONI Chi-Square Statistic: Tables of G. B. Beus and D. R. Jensen -- Table 24: The Sequential Chi-Square Criterion for Multivariate Comparisons of Means: Tables of R. J. Freund and J. E. Jackson -- Table 25: The Sequential T2 -Criterion for Multivariate Testing for Means: Tables of R. J. Freund and J. E. Jackson -- IV (Appendix): Supplement -- Preliminary Remarks -- Table 26: The MARDIA-Test for Multivariate Normality, Skewness, and Kurtosis: Tables by K. V. Mardia -- Table 27: Sample Size Requirements for the T2-Test of MANOVA in One-Way Classifications: Tables of J. Läuter -- Table 28: Critical Values for Simultaneous and Sequential BONFERRONI z-Tests: Tables of G. A. Lienert, O. Ludwig, and K. Rockenfeller -- Table 29: Upper Percentage Points of the BONFERRONI t-Statistic: Tables of B. J. R. Bailey -- Table 30: Upper Percentage Points of Statistics for Testing Covariance Matrices: Tables of J. C. Lee, T. C. Chang, and P. R. Krishnaiah -- Final Remarks: Univariate Test Distributions as a Special Case of Their Multivariate Analogs.
Dil:
English