Advances in genetics. Volume 96 için kapak resmi
Advances in genetics. Volume 96
Başlık:
Advances in genetics. Volume 96
ISBN:
9780128097847
Yayın Bilgileri:
Amsterdam : Academic Press, 2016.
Fiziksel Tanımlama:
1 online resource.
Series:
Advances in Genetics ; Volume 96
Contents:
Front Cover -- Advances in Genetics -- Serial Editors -- Advances in Genetics -- Contents -- Copyright -- CONTRIBUTORS -- One -- Fungal Light Sensing at the Bench and Beyond -- 1. INTRODUCTION -- 2. FUNGAL LIGHT SENSING: OF PRISMS AND PROTEINS -- 2.1 Blue Light: Making Fungi LOV and CRY -- 2.1.1 The White Collar Orthologs -- 2.1.1.1 White Collar-1 of Neurospora crassa: A Model of Induction -- 2.1.1.2 LreA of Aspergillus nidulans: A Model of Repression -- 2.1.2 VIVID and ENVOY: Small LOV Domain Proteins with Big Roles -- 2.1.3 Cryptochromes: "New" Functions for an Ancient Protein -- 2.2 Red Light: Phytochromes Under the Light -- 2.2.1 FphA in the Nucleus -- 2.2.2 FphA in the Cytoplasm -- 2.3 Green Light: A Story of Opsin Evolutionary and Functional Elusiveness -- 2.4 Concluding Remarks -- 3. PHOTOBIOLOGY IN INDUSTRIALLY IMPORTANT FUNGI -- 3.1 Light Regulation of Primary Metabolism: Food for Thought ... and Fuel -- 3.2 Light Regulation of Secondary Metabolism: A Tale of Toxins -- 4. PHOTOBIOLOGY IN AGRICULTURALLY IMPORTANT FUNGI -- 4.1 Regulation of Virulence of Plant Pathogenic Fungi by Light and/or Photosensory Pathways -- 4.1.1 Light Induction of Fungal Virulence -- 4.1.2 Light Suppression of Virulence -- 4.1.3 Circadian Control over the Host-Pathogen Interaction -- 4.2 Light as an Agent to Promote Sporulation and Robustness of Biocontrol Fungi -- 5. PHOTOBIOLOGY IN MEDICALLY IMPORTANT FUNGI -- 5.1 Do the White Collar Proteins Play a Conserved Role in Human Fungal Pathogenesis? -- 5.2 Can Light Itself Augment Fungal Virulence? -- 6. IN CONCLUSION: LET THERE BE LIGHT! -- ACKNOWLEDGMENTS -- REFERENCES -- Two -- Advances in Dyslexia Genetics-New Insights Into the Role of Brain Asymmetries -- 1. INTRODUCTION -- 1.1 History of Difficulty with Reading -- 1.2 Dyslexia Definitions -- 1.3 Comorbidities With Other Conditions.

2. MANY THEORIES TO EXPLAIN DYSLEXIA -- 2.1 The Phonological Theory -- 2.2 Slow Temporal Processing -- 2.3 Attention -- 2.4 Endophenotypes -- 2.5 Impaired Auditory Processing -- 2.6 Impaired Visual Processing -- 2.7 The Visual Magnocellular System -- 2.8 The Magnocellular Perineuronal Net -- 2.9 Magnocellular Impairments in Dyslexia -- 2.10 Dyslexia Brain Differences and Laterality -- 3. DYSLEXIA HERITABILITY -- 3.1 Phenotype Definition for Genetic Studies -- 3.2 Candidate Genes -- 3.3 GWAS for Dyslexia or Reading-Related Traits -- 3.4 GWAS for Other Reading-Related Traits -- 3.5 Dyslexia Genome-Wide Association Studies in the Future -- 3.6 Other Genome-Wide Approaches: Copy Number Variant Studies -- 3.7 Copy Number Variant Studies for Dyslexia-Related Phenotypes -- 3.8 Next-Gen Studies -- 4. FROM STATISTICAL VALUES TO DISORDER BIOLOGY -- 4.1 Cilia Biology and Neurodevelopment -- 4.2 Dyslexia Candidate Genes and Cilia -- 4.2.1 DYX1C1 -- 4.2.2 DCDC2 -- 4.2.3 Transmembrane Proteins: KIAA0319 and ROBO1 -- 4.2.4 Rare Variants -- 4.3 Cilia, Handedness, and Dyslexia -- 5. COMPLEX TRAIT, COMPLEX GENETICS -- 6. CONCLUDING REMARKS -- ACKNOWLEDGMENTS -- REFERENCES -- Three -- Genetics of Schizophrenia: Historical Insights and Prevailing Evidence -- 1. INTRODUCTION -- 2. GENETICS OF SCHIZOPHRENIA -- 2.1 From Linkage Studies to Genome-Wide Association Studies -- 2.1.1 Into Genome-Wide Association Studies of Common Variants -- 2.2 Insights From Rare and De Novo Mutation Events -- 3. EPIGENETIC RISK FACTORS FOR SCHIZOPHRENIA -- 3.1 Epigenetics -- 3.2 Epigenetics in Schizophrenia -- 3.2.1 Schizophrenia Genomic Studies and Their Epigenetic Implications -- 3.2.2 Epigenetic/Epigenomic Studies and Their Schizophrenia Implications -- 3.2.3 Epigenome-Wide Association Studies for Schizophrenia -- 4. DISCUSSION -- 4.1 Schizophrenia Genetics -- 4.2 Schizophrenia Epigenetics.

4.3 Concluding Remarks -- REFERENCES -- Four -- The Functionality and Evolution of Eukaryotic Transcriptional Enhancers -- 1. INTRODUCTION -- 2. THE IDENTIFICATION OF ENHANCERS -- 2.1 Phylogenetic Footprinting -- 2.2 ChIP-Seq -- 2.3 ATAC-Seq -- 2.4 Chromosome Conformation Capture Methods: 3C, 4C, 5C, and Hi-C -- 2.5 TALEs and CRISPR -- 3. ENHANCER FUNCTIONALITY -- 3.1 Enhanceosomes Versus Billboards -- 3.2 Transcription Factor Binding Site Affinity -- 3.3 Enhancing From Distance -- 3.4 Shadow Enhancers -- 3.4.1 Shadow Enhancers in Drosophila -- 3.4.2 Shadow Enhancers in Vertebrates -- 3.5 Super Enhancers -- 3.5.1 Novel Regulatory Elements or Clusters of Classical Enhancers? -- 3.6 Enhancing in trans -- 3.6.1 Cytokine Genes -- 3.6.2 Transvection in Drosophila -- 4. ENHANCER EVOLUTION -- 4.1 Enhancer Conservation -- 4.2 Divergent Enhancers -- 4.3 Coevolution and Developmental Systems Drift -- 4.4 The Molecular Evolution of Enhancers -- 4.5 Cis-Regulatory Evolution and Phenotypic Diversification -- 4.5.1 Evolution of New Enhancers via Gene Duplication -- 4.5.2 The Genetic Basis of Phenotypic Evolution -- 4.5.3 Wing Spot Pigmentation Pattern Evolution in Drosophila -- 4.5.4 Trichome Pattern Evolution and Shavenbaby -- 4.5.5 Skeletal Changes in Vertebrates -- 4.5.6 Enhancers Can Evolve in Different Ways to Facilitate Phenotypic Change -- 4.5.7 Temporal Order of Mutations? -- 5. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- K -- L -- M -- N -- O -- P -- R -- S -- T -- V -- W -- Z -- Back Cover.
Abstract:
Advances in Genetics provides the latest information on the rapidly evolving field of genetics, presenting new medical breakthroughs that are occurring as a result of advances in our knowledge of the topic. The book continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines, critically analyzing future directions.
Local Note:
Elsevier
Dil:
English