Advances in Quantum Chemistry. Volume 77
Başlık:
Advances in Quantum Chemistry. Volume 77
ISBN:
9780128137116
Personal Author:
Edition:
First edition.
Yayın Bilgileri:
Cambridge, MA : Academic Press, an imprint of Elsevier, 2018.
Fiziksel Tanımlama:
1 online resource
Series:
Advances in quantum chemistry ; vol. 77 (2018)
Contents:
Front Cover -- Advances in Quantum chemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Per-Olov Löwdin's Impact on a ``Lost Son'' -- 1. Introduction -- 2. The Many Faces of Professor Per-Olov Löwdin -- 3. Prof. Löwdin's Impact on My Professional Career -- 4. Conclusion -- Supplementary Information -- References -- Chapter Two: Consequences of EPR-Proton Qubits Populating DNA -- 1. Introduction -- 1.1. Background and Context -- 1.2. EPR-Entanglement Algorithm Exhibited by T4 Phage, Rat, and Human Genomes -- 2. Reactive Proton States in Duplex DNA -- 2.1. Quantum Uncertainty Limits Generating Entangled Proton Qubits via EPR Arrangements, Keto-Amino→Enol-Imine -- 2.2. Approximate Lifetimes of Metastable Keto-Amino Protons -- 2.3. Model Calculations for Proton Qubit Oscillations, Using a Double Minimum Symmetric Potential and an Asymmetric Doubl ... -- 2.4. Qualitative Estimates for Proton Decoherence Times -- 3. Wave Functions for Entangled Proton Qubit Superposition States Occupying Complementary Pairs at *G'-*C' and G-C Sites -- 3.1. The Asymmetric Channel -- 3.2. The Symmetric Channel -- 4. Symmetry in Entangled Proton Qubit ``Measurements'' on G'2 0 2 and *C2 0 22 States -- 5. Enzyme-Proton Entanglement for ``Incoming'' Tautomer Quantum Search -- 6. Entanglement Resource Hypothesis for Origin of the Triplet Code -- 7. Hypothesis for Molecular ``Life-Forms'' to Originate and Evolve on Prebiotic ``Earth-Like'' Planets -- 8. EPR-Entanglement Algorithm Predictions of Observable, Time-Dependent Genome Evolution Events and Processes -- 8.1. Roles of Entangled Proton Qubits and ``Gatekeeper'' Genes in Orgel's ``Error Catastrophe'' Hypothesis -- 8.2. Entanglement-Originated, and Classically Originated, SNPs Exhibit Distinguishable Biological Profiles.
8.3. Quantum and Classical Contributions to Age-Related Disease via an EPR-Entanglement, Darwinian Polynomial -- 8.4. Manifestation of Huntington's Disease in Terms of Quantum Entanglement and Classical Contributions to the Expanded ... -- 8.5. Age-Related Tumorigenesis in Terms of the Darwinian, EPR-Entanglement Polynomial -- 8.6. Origin of Late-Onset Alzheimer's Disease in Terms of the Darwinian, EPR-Entanglement Polynomial -- 9. Discussion -- 10. Summarizing Conclusion -- Acknowledgments -- Appendix. Probability of EPR-Generated Hydrogen Bond Arrangements, Keto-Amino→Enol-Imine, Using Approximate Quantum Methods20 -- References -- Chapter Three: Electron-Impact Ionization Cross Sections for Inner L- and M-Subshells of Atomic Targets at Relativistic E ... -- 1. Introduction -- 2. Outline of the Theoretical Models -- 2.1. XMCN Model -- 2.2. XMUIBED Model -- 3. Experimental Data Sources -- 4. Results and Discussions -- 4.1. Inner-Subshell Ionization of L -- 4.2. Inner-Subshell Ionization of M -- 5. Conclusions -- Acknowledgments -- References -- Chapter Four: Aromaticity Revisited -- 1. Introduction -- 2. Structural Approach to Aromaticity -- 3. The Hückel 4n+2 Rule -- 4. The Generalized Hückel 4n+2 Rule -- 5. Conjugated Circuits -- 6. Three Novel Major Findings -- 7. One Swallow Does Not Make a Spring -- 8. Numerical Clar's Aromatic Sextet Structures -- 9. Ring Bond Orders -- 10. The Fully Benzenoid Hydrocarbons -- 11. Global Aromatic Character -- 12. Aromaticity Map of Benzenoid Hydrocarbons -- 13. An Illustration -- 14. On the Count of Kekulé Valence Structures in Benzenoid Hydrocarbons -- 15. Aromaticity and Pseudoaromaticity -- 16. Concluding Remarks -- Acknowledgments -- References -- Chapter Five: The Series Solution Method in Quantum Chemistry for Three-Particle Systems -- 1. Introduction -- 2. The Series Solution Method.
2.1. One Dimension -- 2.2. Multidimension -- 3. The Series Solution Method for Helium -- 3.1. The Seminal 1958 Paper of Pekeris -- 3.1.1. Perimetric Coordinates -- 3.1.2. The Wavefunction -- 3.2. Comparison With the Variational Method -- 3.3. The Frost Papers -- 3.4. A Unified Treatment of Atoms and Molecules -- 4. The Stability of Three-Particle Systems -- 5. The Series Solution Method for Critical Stability -- 5.1. The Stability Domain of Unit-Charge Three-Body Systems -- 5.1.1. Lower Bound to Stability -- 5.1.2. ``Exact'' Stability Bound -- 5.2. The Critical Nuclear Charge for Binding Two-Electrons: A Variational Principle for the Threshold Value of Nuclear Charge -- 6. Electron Correlation: A HF Implementation -- 7. The Correlated Motion of Nuclei -- 8. Conclusions -- Acknowledgments -- References -- Chapter Six: Adiabatic Passage Control Methods for Ultracold Alkali Atoms and Molecules via Chirped Laser Pulses and Opti ... -- 1. Introduction -- 2. Adiabatic Rapid Passage Two-Photon Excitation of a Rydberg Atom -- 2.1. Introduction -- 2.2. ARP in a Three-Level Ladder System: Theory -- 2.3. ARP in a Three-Level Ladder System: Numerical Analysis -- 3. ARP Two-Photon Excitation in Ultracold Rb Interacting With a Single Nanosecond Chirped Pulse -- 3.1. Introduction -- 3.2. The Interaction Between the Linearly Chirped Pulse and the Four-Level System -- 3.3. Numerical Simulation and Adiabaticity Condition -- 3.4. Dressed State Analysis -- 3.4.1. Four-Level System -- 3.4.2. Effective Three-Level System -- 3.5. The Application to Transitions Between Magnetic Sublevels in the 85Rb Atom Using Circularly Polarized Light -- 4. Harmonic Spectral and Temporal Modulation of an Optical Frequency Comb to Control the Ultracold Molecules Formation -- 4.1. Introduction -- 4.2. The Seven-Level System.
4.3. Temporally Modulated OFC and Numerical Analysis of the System Dynamics -- 4.4. Spectrally Modulated OFC and Numerical Analysis of System Dynamics -- 4.5. The Impact of Decoherence -- 4.6. Parity Analysis -- 4.7. Dressed States Analysis -- 5. Conclusion -- Acknowledgments -- References -- Chapter Seven: Dipole Sum Rules of an Endohedral Confined Hydrogen Atom: Effects of the Cavity Discontinuity -- 1. Introduction -- 2. Theory -- 2.1. Sum Rules and Closure Relations -- 2.2. Dipole Oscillator Strength -- 2.3. Endohedral Confined Hydrogen Atom -- 2.4. Sum Rules for Endohedral Cavities -- 3. Results -- 4. Conclusions -- Acknowledgments -- References -- Chapter Eight: Electron-Atom and Electron-Molecule Resonances: Some Theoretical Approaches Using Complex Scaled Multiconf ... -- 1. Introduction -- 2. Theory -- 2.1. Resonances Correspond to the Complex Eigenvalues of the Hamiltonian -- 2.1.1. The Siegert Functions -- 2.1.2. ``Non-Hermitian'' Hamiltonian -- 2.2. Complex Scaling Makes the Resonances Amenable to Bound-State Methods -- 2.2.1. The Complex Scaling Transformation -- 2.2.2. Complex Scaling of the Hamiltonian -- 2.2.3. Spectrum of the Complex Scaled Hamiltonian -- 2.2.4. CCBON Basis for H- -- 2.2.5. Computational Issues -- 2.3. Multiconfigurational Self-Consistent Field-Based Methods Using H- -- 2.3.1. Second Quantization Algebra Adapted for CCBON Spin Orbitals -- 2.3.2. Complex Scaled Multiconfigurational Self-Consistent Field -- 2.3.3. MCSTEP Method -- 2.3.4. Complex Scaled Multiconfigurational Time-Dependent Hartree-Fock -- 2.3.5. Complex Scaled Multireference Configuration Interaction -- 3. Results and Discussion -- 3.1. Atoms Using CMCSTEP -- 3.1.1. 2P Be- Shape Resonance -- 3.1.2. 2P Mg- Shape Resonance -- 3.1.3. 2D Ca- Shape Resonance -- 3.1.4. B- Shape, Feshbach, and Core-Excited Resonances -- 3.1.4.1. The 1s22s22p21D Shape Resonance.
3.1.4.2. The 3D 1s22s2p3 Feshbach Resonance -- 3.1.4.3. The 1s2s22p33D, 3S, and 3P Core-Excited Resonances -- 3.2. Diatomic Molecules Using CMCSTEP -- 3.2.1. N2- Shape Resonance -- 3.2.2. CO- Shape Resonance -- 3.2.3. NO- Shape Resonances -- 3.2.4. O2- Shape Resonance -- 3.3. CMCDTHF -- 3.3.1. The He1S (2s2) State -- 3.3.2. The Be1Po (1s22p3s) State -- 3.4. A CMR-CI Method -- 3.4.1. He (2s2) 1S State -- 3.4.2. Core-Excited Auger Resonances for the Li and Li-Like Systems -- 3.4.3. The Core-Excited Auger Resonances for the Be and Be-Like Systems -- 4. Summary and Conclusions -- Acknowledgment -- References -- Chapter Nine: The Hydrogen-Atom Problem and Coulomb Sturmian Functions in Spheroidal Coordinates -- 1. Introduction -- 2. Discrete Spectrum -- 2.1. Basic Equations -- 2.2. Coulomb Spheroidal Functions -- 2.3. Properties of Coulomb Spheroidal Functions -- 3. Continuous Spectrum -- 3.1. Quasi-Angular Functions -- 3.2. Quasi-Radial Functions -- 4. Coulomb Sturmian Basis in Spheroidal Coordinates -- 5. Application -- 6. Conclusion -- Appendix A -- Appendix B -- Appendix C -- References -- Further Reading -- Index -- Back Cover.
Abstract:
"Advances in Quantum Chemistry, Volume 77, presents surveys of current topics in this rapidly developing field, one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. It features detailed reviews written by leading international researchers, with this release focusing on topics such as Per-Olov Löwdin's Impact on a 'Lost Son', Electron impact ionization cross sections for inner L- and M-subshells of atomic targets at relativistic energies, Aromaticity Revisited, Electron-atom and electron-molecule resonances, Precise Born-Oppenheimer potentials of the excited states of H_2 using explicitly correlated exponential functions, and more. Presents surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biologyFeatures detailed reviews written by leading international researchers"-- Provided by publisher.
Local Note:
Elsevier
Added Author:
Elektronik Erişim:
Full Text Available From Elsevier e-Books
Dil:
English