Bridging scales in modelling and simulation of reacting lows. Part 1 için kapak resmi
Bridging scales in modelling and simulation of reacting lows. Part 1
Başlık:
Bridging scales in modelling and simulation of reacting lows. Part 1
ISBN:
9780128150979

9780128150962
Edition:
First edition.
Yayın Bilgileri:
Cambridge, Massachusetts : Academic Press, 2018.
Fiziksel Tanımlama:
1 online resource (204 pages).
Series:
Advances in Chemical Engineering ; Volume 52

Advances in chemical engineering ; Volume 52.
Contents:
Front Cover -- Bridging Scales in Modelling and Simulation of Non-Reacting and Reacting Flows. Part I -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Quadrature-Based Moment Methods for Multiphase Chemically Reacting Flows -- 1. Introduction -- 1.1. Multiscale Models for Polydisperse Fluid-Particle Flows -- 1.2. Multiscale Modeling Approach -- 1.3. Moment Methods -- 2. Quadrature-Based Moment Methods -- 2.1. Quadrature Method of Moments -- 2.2. Extended Quadrature Method of Moments -- 2.3. Hyperbolic Quadrature Method of Moments -- 3. Kinetic-Based Finite-Volume Methods -- 3.1. Solution of Moment Transport Equations -- 3.2. Kinetic-Based Spatial Fluxes -- 3.3. Hyperbolic Spatial Fluxes Using HyQMOM -- 3.4. Realizable Time-Stepping Schemes -- 4. Application to Turbulent Reacting Flows -- 4.1. Univariate Case Without Reactions -- 4.2. Multivariate Case With Chemical Reactions -- 4.3. Algorithm for Turbulent Reacting Flows -- 5. Application to the Population Balance Equation for Fine Particles -- 5.1. Fine Particles in Laminar Flows -- 5.2. Fine Particles in Turbulent Flows -- 6. Application to the Kinetic Equation for Gas-Particle Flows -- 6.1. Governing Equations for All Gas-Particle Flow Regimes -- 6.2. Solution Algorithm for All Gas-Particle Flow Regimes -- 6.3. Application to Particle-Laden Flows -- 7. Concluding Remarks -- References -- Further Reading -- Chapter Two: Numerical Simulation of Multiphase Reactive Flows -- 1. Introduction -- 2. Brief Description of the Experimental Campaign -- 3. Modeling Description -- 3.1. Eulerian Approach -- 3.2. Methane-Air Premixed Combustion Modeling -- 3.3. Thermal Radiation Model -- 3.4. Local Phase Temperature Determination -- 4. Numerical Simulations -- 4.1. Code Description and Performances -- 4.2. Reactive Fluidized Bed Simulations -- 5. Results and Discussions.

5.1. Preliminary Results -- 5.2. Effect of Heat Exchanges at the Wall -- 5.3. Effect of the Grid Refinement -- 5.4. Mesoscopic and Macroscopic Scale Analysis -- 5.5. Evaluation of the Subgrid Turbulent Mixing Effect on the Combustion Process -- 6. Conclusion -- Appendix. Modeling Reactive Gas-Particle Flows -- A.1. Gas-Phase Modeling -- A.2. Dispersed Phase Modeling -- A.3. Closure Laws -- A.3.1. Modeling the Collision Terms -- A.3.2. Modeling the Mean Interphase Transfers -- A.3.3. Modeling the Particle Fluctuating Motion -- A.3.4. Modeling the Fluid-Particle Velocity Correlations -- References -- Chapter Three: Simulation of Turbulent Coalescence and Breakage of Bubbles and Droplets in the Presence of Surfactants, S ... -- 1. Introduction -- 2. Phenomenology of Fluid Particle Breakup -- 3. Phenomenology of Fluid Particle Coalescence -- 4. Analysis of Different Models for Fluid Particle Breakage Kernel -- 4.1. Turbulent Fluctuations Breakage Models -- 4.1.1. Turbulent Kinetic Energy for a Fluid Particle Greater Than a Critical Value -- 4.1.2. Turbulent Velocity Fluctuation Around the Particle Greater Than a Critical Value -- 4.1.3. Turbulent Kinetic of the Bombarding Eddy Greater Than a Critical Surface Energy Value -- 4.1.4. Turbulent Inertial Stress of a Hitting Eddy Greater Than the Interfacial Force of the Smallest Daughter Particle -- 4.1.5. Breakage Kernel Multifractal Model -- 4.1.6. Particle Breakage Model for Finite Reynolds Number -- 4.2. Models for Other Breakage Mechanisms -- 4.3. Breakage Kernel in Contaminated Systems -- 4.4. Comparison Among Different Breakage Kernel Models -- 5. Models for the Daughter Size Distribution Function (DaSD) -- 5.1. Statistical Models -- 5.2. Phenomenological Models -- 5.2.1. Bell-Shape -- 5.2.2. U-Shape -- 5.2.3. M-Shape -- 6. Analysis of Different Models for Fluid Particle Coalescence Kernel.

6.1. Models for Collision Frequency h(xi1, xi2) -- 6.1.1. Collisions Due to Turbulent Velocity Fluctuations -- 6.1.2. Collisions Due to Other Mechanisms -- 6.2. Models for Coalescence Efficiency η(xi1, xi2) -- 6.2.1. Energy Model -- 6.2.2. Critical Approach Velocity Model -- 6.2.3. Film Drainage Model -- 6.2.3.1. Nondeformable Particles With Immobile Interfaces -- 6.2.3.2. Deformable Particles With Immobile Interfaces -- 6.2.3.3. Deformable Particles With Partially Mobile Interfaces -- 6.2.3.4. Deformable Particles With Fully Mobile Interfaces -- 6.2.4. Other Models for Contaminated Systems -- 6.3. Comparison Among Different Models for Coalescence Kernels -- 7. Conclusions -- References -- Index -- Back Cover.
Local Note:
Elsevier
Dil:
English