Annual reports on NMR spectroscopy. Volume 92 的封面图片
Annual reports on NMR spectroscopy. Volume 92
题名:
Annual reports on NMR spectroscopy. Volume 92
PRODUCTION_INFO:
London : Academic Press is an imprint of Elsevier, 2017.
物理描述:
1 online resource : illustrations
内容:
Front Cover -- Annual Reports on NMR Spectroscopy -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: The DEPT Experiment and Some of Its Useful Variants -- 1. Introduction -- 2. Product Operator Formalism -- 3. Spin Echo (SE)-Based Experiments -- 3.1. The SEFT/APT Sequence -- 3.2. The CAPT Sequences -- 3.3. The SEMUT Sequences -- 4. INEPT-Based Experiments -- 4.1. A Few General Remarks -- 4.2. The INEPT Sequences -- 4.3. The PENDANT Sequence -- 5. Basic Theory Analysis of the Standard DEPT Experiment -- 5.1. The Standard DEPT Pulse Sequence -- 5.2. PO Treatment of the DEPT Experiment -- 5.3. The Influence of the Last Proton Pulse and Spectral Editing -- 5.4. The Influence of the Interpulse Delay Delta -- 5.5. The Influence of Phase Cycling -- 5.6. The Influence of the 13C 180 Degree Pulse -- 5.7. Strengths and Weaknesses of the DEPT Sequence -- 6. The POMMIE Experiment -- 7. Application of DEPT to Other Heteronuclei -- 7.1. 29Si/1H DEPT Experiments -- 7.2. The Special Case of 13C/19F DEPT Experiments -- 8. The DEPT+ and DEPT++ Sequences -- 8.1. Analyses of the Sequences -- 9. J-Compensated DEPT Sequences -- 10. The IDEPT Experiment -- 11. Inclusion of Quaternary Carbons: The DEPTQ Sequence -- 11.1. A Few General Remarks -- 11.2. Analyses of the Basic DEPTQ Pulse Sequence -- 11.3. Improvements for the DEPTQ Pulse Sequence -- 11.4. Illustrative Examples -- 12. Equalizing the Intensities: The ACCORDEPT Experiment -- 12.1. Analyses of the ACCORDEPT Pulse Sequence -- 12.2. Decrementation Technique -- 13. Obtaining Quantitative 13C Spectra: The Q-DEPT and Q-DEPT+ Experiments -- 14. Comparison of APT, DEPT, DEPTQ, RefINEPT, and PENDANT Experiments: Conclusion and Practical Recommendations -- Appendix -- References -- Chapter Two: NMR Studies of Organic Aerosols -- 1. Introduction.

2.1. Definitions of Nonlinearity and Related Terms -- 2.2. The High Temperature and High Field Limits -- 2.3. Effects at High Polarization -- 3. Nonadditive NMR Signals -- 4. Nonlinearity of Nuclear Spin Noise -- 5. NMR-Maser Emissions -- 6. Avoiding Nonlinear Response in Quantitative NMR -- 7. Conclusion and Outlook -- References -- Chapter Five: Applications of Solid-State 43Ca Nuclear Magnetic Resonance: Superconductors, Glasses, Biomaterials, and NM ... -- 1. Introduction and Background -- 1.1. Scope -- 1.2. Calcium: Why Should We Care? -- 1.3. Obtaining High-Quality 43Ca SSNMR Data Is Challenging -- 1.4. Ways to Improve 43Ca SSNMR Sensitivity and/or Resolution -- 1.4.1. Brute Force: Isotopic Enrichment -- 1.4.2. Increase the Applied Magnetic Field (B0) -- 1.4.3. Magic-Angle Spinning -- 1.4.4. Double-Rotation and Dynamic-Angle Spinning -- 1.4.5. Magic-Angle Coil Spinning -- 1.4.6. Cross-Polarization -- 1.4.7. Manipulate Satellite Transitions to Enhance the CT -- 1.4.8. Multiple-Quantum MAS -- 1.4.9. Decouple Abundant Nuclei -- 1.4.10. Decrease the System Temperature -- 1.5. What Can Be Measured Using 43Ca SSNMR Experiments? -- 1.5.1. Chemical Shifts (and 43Ca NMR Reference Materials) -- 1.5.2. Knight Shifts and Spin Susceptibility -- 1.5.3. Quadrupolar Interaction (and Euler Angles) -- 1.5.4. Sternheimer Antishielding -- 1.5.5. Spin-Lattice Relaxation (T1) -- 1.5.6. Extracting Tensor Information From 43Ca SSNMR Spectra -- 1.5.7. Direct Insight Into Ca Local Environments via Heteronuclear Correlations -- 1.6. Relationships Between Measured Parameters and Structure -- 1.6.1. Calcium First Coordination Shell Average Distance vs Chemical Shift -- 1.6.2. Calcium Coordination Number vs Chemical Shift -- 1.6.3. EFG Tensor Magnitude and Calcium Local Environment -- 2. Calcium-43 Solid-State NMR Literature Accounts.

2.1. Early Double-Resonance/Magnetization Transfer Experiments -- 2.2. Calcium-Containing Inorganics -- 2.2.1. Calcium-Containing High-Temperature Superconductors -- 2.2.2. CaCO3 Polymorphs and Calcium-Containing Carbonates -- 2.2.3. Calcium Hydroxide -- 2.2.4. Silicates, Glasses, Cements, Concretes, and Clays -- 2.2.5. Phosphites, Phosphates, Bones, and Teeth -- 2.2.6. Other Binary and Ternary Inorganics (and Hydrates Thereof) -- 2.2.7. Other Inorganic Applications and Exotica -- 2.3. Biomaterials -- 2.4. Calcium-Containing Organics and Bioorganics -- 2.5. Quantum Chemical Calculations (Usually DFT) -- 2.6. Calcium-43 NMR Crystallography -- 3. Calcium-43 SSNMR Prospective -- Acknowledgments -- References -- Chapter Six: Solid-State NMR Spectroscopy: The Magic Wand to View Bone at Nanoscopic Resolution -- 1. Introduction -- 2. Solid-State NMR Studies of Bone Mineral -- 2.1. MAS NMR of Metal Cations in the Bone Mineral -- 2.2. Phosphorous-31 MAS NMR of Bone -- 3. Solid-State NMR Studies of Bone Organic Matrix -- 3.1. Carbon-13 MAS NMR of Bone -- 3.2. Carbon-13 MAS NMR to Monitor Dehydration-Induced Structural Changes in Bone -- 3.3. Water-Associated Dynamical Changes in Bone Architecture -- 3.4. Measurement of Water-Dependent Backbone Dynamics of Native Collagen in Bone by Natural-Abundance 15N Spectroscopy -- 3.5. Carbon-13 MAS NMR of Articular Cartilage -- 4. Solid-State MAS NMR of the Organic-Mineral Interface in Bone -- 4.1. Collagen-Mineral Interface in Bone: A Sensitive Parameter to Assess Bone Quality -- 5. Enhancing Sensitivity of SSNMR Spectroscopy of Bone and Cartilage -- 5.1. Proton-Detected Ultrafast MAS NMR of Bone -- 5.2. Sensitivity Enhancement by Dynamic Nuclear Polarization (DNP) -- 5.3. Sensitivity Enhancement in Cartilage -- 6. Conclusions -- Acknowledgments -- References -- Index -- Back Cover.
本地注释:
Elsevier
附加团体著者:

语言:
英文